Quasi-regular Dirichlet forms: Examples and counterexamples
نویسنده
چکیده
We prove some new results on quasi-regular Dirichlet forms. These include results on perturbations of Dirichlet forms, change of speed measure, and tightness. The tightness implies the existence of an associated right continuous strong Markov process. We also discuss applications to a number of examples including cases with possibly degenerate (sub)-elliptic part, diffusions on loops spaces, and certain Fleming-Viot processes. AMS Subject Classification: Primary 31C25 Secondary 60J60
منابع مشابه
Quasi-Regular Dirichlet Forms and Applications
Since the celebrated result of Fukushima on the connection between regular Dirichlet forms and Hunt processes in 1971, the theory of Dirichlet forms has been rapidly developed and has brought a wide range of applications in various related areas of mathematics and physics (see e.g. the three new books [BH 91], [MR 92], [FOT 94] and references therein). In this survey paper I shall mainly discus...
متن کاملAddendum to the Paper " Dirichlet Forms and Markov Processes : a Generalized Framework including Bothelliptic and Parabolic Cases
We extend the main result in A/M/R], which is a complete characterization of all Dirichlet forms deened on some L 2 {space L 2 (E; m) associated with m{tight special standard processes, to the framework of generalized Dirichlet forms. 0. Introduction In our previous work St] we introduced the class of generalized Dirichlet forms which contains symmetric and coercive Dirichlet forms as treated i...
متن کاملQuasi-regular topologies for L-resolvents and semi-Dirichlet forms
We prove that for any semi-Dirichlet form (ε, D(ε)) on a measurable Lusin space E there exists a Lusin topology with the given σ-algebra as the Borel σ-algebra so that (ε, D(ε)) becomes quasi–regular. However one has to enlarge E by a zero set. More generally a corresponding result for arbitrary L-resolvents is proven.
متن کاملEnough Regular Cauchy Filters for Asymmetric Uniform and Nearness Structures
Quasi-nearness biframes provide an asymmetric setting for the study of nearness; in [1] a completion (called a quasi-completion) was constructed for such structures and in [2] completeness was characterized in terms of the convergence of regular Cauchy bifilters. In this talk, questions of functoriality for this quasi-completion are considered and one sees that having enough regular Cauchy bifi...
متن کاملApproximation of Arbitrary Dirichlet Processes by Markov Chains 1);2)
We prove that any Hunt process on a Hausdorr topological space associated with a Dirichlet form can be approximated by a Markov chain in a canonical way. This also gives a new and \more explicit" proof for the existence of Hunt processes associated with strictly quasi-regular Dirichlet forms on general state spaces.
متن کامل